Gene‐specific amplicons from metagenomes as an alternative to directed evolution for enzyme screening: a case study using phenylacetaldehyde reductases
نویسندگان
چکیده
Screening gene-specific amplicons from metagenomes (S-GAM) is a highly promising technique for the isolation of genes encoding enzymes for biochemical and industrial applications. From metagenomes, we isolated phenylacetaldehyde reductase (par) genes, which code for an enzyme that catalyzes the production of various Prelog's chiral alcohols. Nearly full-length par genes were amplified by PCR from metagenomic DNA, the products of which were fused with engineered par sequences at both terminal regions of the expression vector to ensure proper expression and then used to construct Escherichia coli plasmid libraries. Sequence- and activity-based screening of these libraries identified different homologous par genes, Hpar-001 to -036, which shared more than 97% amino acid sequence identity with PAR. Comparative characterization of these active homologs revealed a wide variety of enzymatic properties including activity, substrate specificity, and thermal stability. Moreover, amino acid substitutions in these genes coincided with those of Sar268 and Har1 genes, which were independently engineered by error-prone PCR to exhibit increased activity in the presence of concentrated 2-propanol. The comparative data from both approaches suggest that sequence information from homologs isolated from metagenomes is quite useful for enzyme engineering. Furthermore, by examining the GAM-based sequence dataset derived from soil metagenomes, we easily found amino acid substitutions that increase the thermal stability of PAR/PAR homologs. Thus, GAM-based approaches can provide not only useful homologous enzymes but also an alternative to directed evolution methodologies.
منابع مشابه
افزایش ویژگیهای عملیاتی آنزیم اندوگلوکاناز از طریق تغییر اسیدآمینهای
Background & Aims : Ethanol produced from plant cellulose is called bioethanol and is recognized as a unique sustainable liquid fuel with powerful economic and environmental effects. In the present study we aimed at integrate a cellulase gene in to yeast genome to have the enzyme secreted out of the cell. Subsequently cellulose is depredated to glucose by the enzyme, and then it is ferment ...
متن کاملAssociation of TPMT (rs1800460) Gene Polymorphism with Childhood Acute Lymphoblastic Leukemia in a Population from Guilan, Iran
Acute lymphoblastic leukemia (ALL) is a malignant transformation and proliferation of lymphoid progenitor cells in bone marrow and blood, which is mainly found in children. Thiopurine methyltransferase (TPMT) is a thiopurine drug metabolizer enzyme that is prescribed for the treatment of ALL. Several single nucleotide polymorphisms in the TPMT gene have been reported to be associated with the d...
متن کاملMicro-colony array based high throughput platform for enzyme library screening.
Enzymes are becoming increasingly important tools for synthesizing and modifying fine and bulk chemicals. The availability of biocatalysts which fulfil the requirements of industrial processes is often limited. Recruiting suited enzymes from natural (e.g. metagenomes) and artificial (e.g. directed evolution) biodiversity is based on screening libraries of microbial clones expressing enzyme vari...
متن کاملINVESTIGATION ON ANTI-GLUTAMIC ACID DECARBOXYLASE ANTIBODIES IN TYPE I DIABE TES MELLITUS
Antibodies directed against the enzyme glutamic acid decarboxylase (GAD) are believed to be the main cause of destruction of pancreatic islet cells in type I (insulin dependent) diabetes mellitus. The enzyme was found both in the brain and pancreatic beta cells. Although similarities in identity of GAD in human and rat brain have been demonstrated, little is known about the interaction betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016